# COMP2111 Week 5 Term 1, 2024 First-Order Predicate Logic

# **Summary of topics**

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

# **Summary of topics**

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

Can we encode this statement in propositional logic?



Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \{1, 2, 3\}$ : 18 propositional variables:

$$P_{11} = "1 = 1 + 1" \quad S_{11} = "1 \le 1"$$
 $P_{12} = "2 = 1 + 1" \quad S_{12} = "1 \le 2"$ 
 $\vdots \quad \vdots \quad \vdots \quad \vdots$ 

Final result:  $(P_{11} \rightarrow S_{11}) \land (P_{12} \rightarrow S_{12}) \land \cdots \land (P_{33} \rightarrow S_{33})$ 

#### NB

"Normal arithmetic", where  $P_{11}$  is false,  $P_{12}$  is true, etc is just one of many possibilities.



Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \mathbb{N} : \infty$  propositional variables:

$$P_{00} = "0 = 0 + 0"$$
  $S_{00} = "0 \le 0"$   
 $P_{01} = "1 = 0 + 1"$   $S_{01} = "0 \le 1"$   
 $\vdots$   $\vdots$ 

Final result:  $(P_{00} \rightarrow S_{00}) \land (P_{01} \rightarrow S_{01}) \land \cdots$ 



Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

 $X = \mathbb{N} : \infty$  propositional variables:

$$P_{00} = "0 = 0 + 0"$$
  $S_{00} = "0 \le 0"$   
 $P_{01} = "1 = 0 + 1"$   $S_{01} = "0 \le 1"$   
 $\vdots$   $\vdots$ 

Final result:  $(P_{00} \rightarrow S_{00}) \land (P_{01} \rightarrow S_{01}) \land \cdots$  Not permitted!



Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

Predicate logic introduces:

Predicates



#### Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions



#### Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \leq y)$$

- Predicates
- Functions
- Constants

#### Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

- Predicates
- Functions
- Constants
- Variables, and

#### Consider the statement:

For all 
$$x, y \in X : (y = x+1) \rightarrow (x \le y)$$

- Predicates
- Functions
- Constants
- Variables, and
- Quantifiers

Q: Is this a true statement?

$$\forall x y. x = y$$

Q: Is this a true statement?

$$\forall x y. x = y$$

A: depends on what the domain of discourse is.

Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

• Predicates: Relations on the domain

- Predicates: Relations on the domain
- Functions: Operators on the domain

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)



- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements



Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

#### Example

Consider:  $\forall x \mathbf{C}(x)$  where  $\mathbf{C}(x)$  represents "x studies COMP2111" It is true if the domain of discourse is the set of students in this room.



Fundamental to interpreting formulas is the **domain of discourse**: the set of "ground objects" that we are referring to.

- Predicates: Relations on the domain
- Functions: Operators on the domain
- Constants: "Named" elements of the domain
- Variables: "Unnamed" elements of the domain (placeholders for elements)
- Quantifiers: Range over domain elements

## **Example**

Consider:  $\forall x \mathbf{C}(x)$  where  $\mathbf{C}(x)$  represents "x studies COMP2111" It is false if the domain of discourse is the set of students at UNSW.



# Multiple domains of discourse

Multiple domains can be combined into one as follows.

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

## Multiple domains of discourse

Multiple domains can be combined into one as follows.

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

- Take STUDENTS ∪ SUBJECTS as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.

## Multiple domains of discourse

Multiple domains can be combined into one as follows.

For example: the predicate studies(x, y) representing "x (a student) studies y (a subject)".

- Take STUDENTS ∪ SUBJECTS as the domain.
- Use unary predicates, e.g. isStudent(x), to restrict the domain.
- To restrict quantifiers (applies to any subset of the domain defined by a unary predicate):
  - $\exists x \in \text{STUDENTS} : \varphi \text{ is equivalent to: } \exists x (\text{isStudent}(x) \land \varphi)$
  - $\forall x \in \text{Student}(x) \to \varphi$  is equivalent to:  $\forall x (\text{isStudent}(x) \to \varphi)$

Function outputs, constants, and variables are interpreted as elements of the domain.

Predicates are truth-functional: they map elements of the domain to true or false.

Quantifiers (and the Boolean connectives) are predicate operators: they transform predicates into other predicates.

Consider the following predicates and constants:

```
K(x,y): x knows y

S(x,y): x is not the son of y
```

```
J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: PEOPLE

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$ : Jon Snow knows nothing.

Consider the following predicates and constants:

```
K(x, y): x knows y

S(x, y): x is not the son of y
```

```
J: Jon Snow
N: Ned Stark
B: Bran Stark
```

Domain of discourse: PEOPLE

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$ : Jon Snow knows no-one.

Consider the following predicates and constants:

```
K(x, y): x knows y

S(x, y): x is not the son of y
```

J: Jon Snow
N: Ned Stark
B: Bran Stark

Domain of discourse: PEOPLE

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$ : Jon Snow knows no-one.

This is not:

 $\bullet$  K(B,S(J,N)): Bran knows that Jon is not the son of Ned

Consider the following predicates and constants:

```
K(x, y): x knows y

S(x, y): x is not the son of y

F(x, y): the fact that x is not the son of y (functional)

J: Jon Snow

N: Ned Stark
```

Domain of discourse: PEOPLE UFACTS

Bran Stark

The following are OK:

- S(B, J): Bran is not the son of Jon
- K(N, J): Ned knows Jon
- $\forall x \neg K(J, x)$ : Jon Snow knows no-one.

This is OK:

B:

• K(B, F(J, N)): Bran knows that Jon is not the son of Ned



# **Summary of topics**

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

# Vocabulary

A **vocabulary** indicates what <u>predicates</u>, <u>functions</u> and <u>constants</u> we can use to build up our formulas. Very similar to C header files, or Java interfaces, or database schemas.

A vocabulary V is a set of:

- Predicate symbols P, Q, ..., each with an associated arity (number of arguments)
- Function symbols f, g, ..., each with an associated arity
- Constant symbols c, d, ... (also known as 0-arity functions)



# Vocabulary

A **vocabulary** indicates what predicates, functions and constants we can use to build up our formulas. Very similar to C header files, or Java interfaces, or database schemas.

A vocabulary V is a set of:

- Predicate symbols P, Q, ..., each with an associated arity (number of arguments)
- Function symbols f, g, ..., each with an associated arity
- Constant symbols c, d, ... (also known as 0-arity functions)

## Example

 $V = \{ \leq, +, 1 \}$  where  $\leq$  is a binary predicate symbol, + is a binary function symbol, and 1 is a constant symbol.



# Vocabulary: example (databases)

#### **Example**

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

| Person   |        |
|----------|--------|
| Name:    | String |
| Surname: | String |
| Address: | String |

| Employee |        |
|----------|--------|
| ID:      | int    |
| Surname: | String |

# Vocabulary: example (databases)

#### **Example**

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

| Person   |        |
|----------|--------|
| Name:    | String |
| Surname: | String |
| Address: | String |

| <b>Employee</b> |        |
|-----------------|--------|
| ID:             | int    |
| Surname:        | String |

Tables *relate* a number of attributes

The above schema would be represented by the vocabulary:

$$DB = \{Person, Employee\}$$

where Person is a ternary predicate symbol and Employee is a binary predicate symbol

# Vocabulary: example (databases)

#### **Example**

A database schema identifies the various tables, their attributes, and their attributes' types. For example:

| Person   |        |
|----------|--------|
| Name:    | String |
| Surname: | String |
| Address: | String |

| <b>Employee</b> |        |
|-----------------|--------|
| ID:             | int    |
| Surname:        | String |

Tables *relate* a number of attributes (over several domains). The above schema would be represented by the vocabulary:

where Person is a ternary predicate symbol and Employee is a binary predicate symbol and isString and isInteger are unary predicate symbols.

#### **Terms**

A term is defined inductively as follows:

- A variable is a term
- A constant symbol is a term
- If f is a function symbol with arity k, and  $t_1, \ldots, t_k$  are terms, then  $f(t_1, t_2, \ldots, t_k)$  is a term.

#### NB

Terms will be interpreted as elements of the domain of discourse.



### **Terms: examples**

#### **Example**

Over  $V = \{\leq, +, 1\}$ , the following are all terms:

- X
- 1
- +(y,1)
- +(y, +(x, 1))

#### **Formulas**

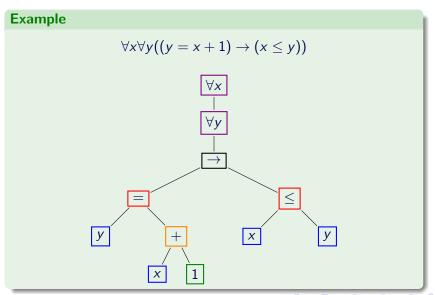
A formula of Predicate Logic is defined inductively as follows:

- If P is a predicate symbol with arity k, and  $t_1, \ldots, t_k$  are terms, then  $P(t_1, t_2, \ldots, t_k)$  is a formula
- If  $t_1$  and  $t_2$  are terms then  $(t_1 = t_2)$  is a formula
- If  $\varphi, \psi$  are a formulas then the following are formulas:
  - ¬φ
  - $(\varphi \wedge \psi)$
  - $(\varphi \lor \psi)$
  - $(\varphi \to \psi)$
  - $(\varphi \leftrightarrow \psi)$
  - $\forall x \varphi$
  - $\exists x \varphi$

#### **NB**

The base cases are known as **atomic** formulas: they play a similar role in the parse tree as propositional variables.

### Parse trees



## Formulas: examples

#### **Example**

Over  $V = \{ \leq, +, 1 \}$ , the following are all formulas:

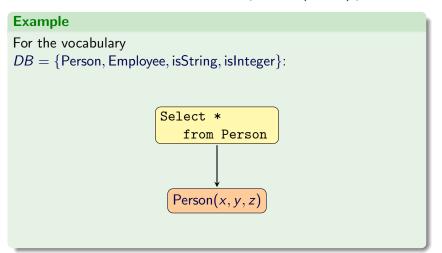
- $\bullet \leq (x,y)$
- $\leq$  (1, 1)
- x = +(y, 1)
- $\leq$  (x, y)  $\rightarrow$  (x = +(y, 1))
- $\exists x(1 = +(1,1))$
- $\bullet \ \forall x \forall y \leq (x,y) \rightarrow (x=+(y,1))$

Feel free to write predicates and functions in infix for readability.



## Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.



# Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

```
Example
For the vocabulary
DB = \{Person, Employee, isString, isInteger, Alice\}:
     Select *
        from Person
        where Person.name = "Alice"
                 Person(x, y, z) \land (x = Alice)
```

# Formulas: example (databases)

In relational databases, formulas correspond to (select-)queries.

```
Example
For the vocabulary
DB = \{Person, Employee, isString, isInteger, Alice\}:
     Select *
        from Person inner join Employee
        on Person.surname = Employee.surname
               Person(x, y, z) \vee Employee(w, y)
```

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

In  $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$ :

• z is bound by  $\exists z$ 



A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

- z is bound by  $\exists z$
- y is free



A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

- z is bound by  $\exists z$
- *y* is free
- First x is bound by  $\exists x$

A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

- z is bound by  $\exists z$
- *y* is free
- First x is bound by  $\exists x$
- Second x is free



A variable is **bound** to the closest matching quantifier that lies above it in the parse tree. A variable that is not bound is **free**.

#### **Example**

In  $(\forall x \exists z \exists x P(x, y, z)) \land Q(x)$ :

- z is bound by  $\exists z$
- *y* is free
- First x is bound by  $\exists x$
- Second x is free

A formula with no free variables is a **sentence**.



- $FV(x) = \{x\}$  for all variables x
- $FV(c) = \emptyset$  for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary functions f

- $FV(x) = \{x\}$  for all variables x
- $FV(c) = \emptyset$  for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary functions f
- $FV(P(t_1,...,t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$



- $FV(x) = \{x\}$  for all variables x
- $FV(c) = \emptyset$  for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary functions f
- $FV(P(t_1,...,t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$



- $FV(x) = \{x\}$  for all variables x
- $FV(c) = \emptyset$  for all constants c
- $FV(f(t_1, ..., t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary functions f
- $FV(P(t_1,...,t_k)) = FV(t_1) \cup \cdots \cup FV(t_k)$  for all k-ary predicates P
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\psi \land \varphi) = FV(\psi \lor \varphi) = FV(\psi \to \varphi) = FV(\psi \leftrightarrow \varphi) = FV(\psi) \cup FV(\varphi)$
- $FV(\forall x\varphi) = FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$



#### **Substitution**

If t is a term,  $\varphi$  a formula, and  $x \in FV(\varphi)$ , then the **substitution** of t for x in  $\varphi$  (denoted  $\varphi[t/x]$ ) is the formula obtained by replacing every free occurrence of x with t.

#### Substitution

If t is a term,  $\varphi$  a formula, and  $x \in FV(\varphi)$ , then the **substitution** of t for x in  $\varphi$  (denoted  $\varphi[t/x]$ ) is the formula obtained by replacing every free occurrence of x with t.

It can be useful to have "access" to the free variables of a formula. So if  $x_1, \ldots, x_k$  are the free variables of  $\varphi$ , we may denote this as  $\varphi(x_1, \ldots, x_k)$ . Substitution can be easily presented:  $\varphi(t)$  for  $\varphi(x)[t/x]$ .

#### Note

Variable names matter:  $\varphi(x)$  and  $\varphi(y)$  are different formulas!



## **Summary of topics**

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic

Q: Is this a true statement?

There is nothing going on between us.



Q: Is this a true statement?

There is nothing going on between us.

A: It depends upon what the meaning of the word 'is' is.



Q: Is this a true statement?

$$1 + 1 = 2$$

Q: Is this a true statement?

$$1 + 1 = 2$$

A: It depends on what the model of 1, 2 and + is.

 $\{\forall,\exists,=,\land,\lor,\neg,\to,\leftrightarrow\}$  have a fixed meaning in first-order logic.

All other symbols are meaningless, unless we specify a model.



Predicate formulas are interpreted in **Models**.

Given a vocabulary V a model  $\mathcal M$  defines:

- A (non-empty) domain  $D = dom(\mathcal{M})$
- For every predicate symbol  $P \in V$  with arity k: a k-ary relation  $P^{\mathcal{M}}$  on D
- For every function symbol  $f \in V$  with arity k: a function  $f^{\mathcal{M}}: D^k \to D$
- For every constant symbol  $c \in V$ : an element,  $c^{\mathcal{M}}$  of D



Predicate formulas are interpreted in **Models**.

Given a vocabulary V a model  $\mathcal M$  defines:

- A (non-empty) domain  $D = dom(\mathcal{M})$
- For every predicate symbol  $P \in V$  with arity k: a k-ary relation  $P^{\mathcal{M}}$  on D
- For every function symbol  $f \in V$  with arity k: a function  $f^{\mathcal{M}}: D^k \to D$
- ullet For every constant symbol  $c \in V$ : an element,  $c^{\mathcal{M}}$  of D

#### **Example**

For the vocabulary  $V = \{ \leq, +, 1 \}$ : one model could be  $\mathbb N$  with the standard definitions.

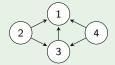


### Models: examples

#### Example

For the vocabulary  $V = \{ \leq, +, 1 \}$  the following are models:

- $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1.
- $\{0,1,2,3,4\}$  with the standard definition of  $\leq$  and 1, and m+n defined as m+n (mod 5).
- The directed graph G = (V, E) shown below with  $\leq = E$ ; and v + w defined to be w.



## Models: example (databases)

#### **Example**

For the vocabulary  $DB = \{Person, Employee, isString, isInteger\}$ , the following **database** is a model:

| Person     |         |             |
|------------|---------|-------------|
| Name       | Surname | Address     |
| Rapunzel   | -       | Tower       |
| Cinderella | -       | c/o Stepmum |
| Snow       | White   | Cottage     |

| Employee |         |  |
|----------|---------|--|
| ID       | Surname |  |
| 31415    | Psmith  |  |
| 27182    | Ukridge |  |
| 16180    | Wooster |  |

isString and isInteger are defined by what values are permitted in each of the columns (sanitizing the input).

### **Environments**

Given a model  $\mathcal{M}$ , an **environment** (or **lookup table**),  $\eta$ , is a function from the set of variables to dom( $\mathcal{M}$ ).



#### **Environments**

Given a model  $\mathcal{M}$ , an **environment** (or **lookup table**),  $\eta$ , is a function from the set of variables to dom( $\mathcal{M}$ ).

Given an environment  $\eta$ , we denote by  $\eta[x \mapsto c]$  the environment that agrees with  $\eta$  everywhere except possibly at x (where it has value c).



### **Interpretations**

An **interpretation** is a pair  $(\mathcal{M}, \eta)$  where  $\mathcal{M}$  is a model and  $\eta$  is an environment.

### **Interpretations**

An **interpretation** is a pair  $(\mathcal{M}, \eta)$  where  $\mathcal{M}$  is a model and  $\eta$  is an environment.

An interpretation  $(\mathcal{M}, \eta)$  maps terms to elements of dom $(\mathcal{M})$  recursively as follows:

- $\bullet \ \llbracket x \rrbracket_{\mathcal{M}}^{\eta} = \eta(x)$
- $\bullet \ \llbracket c \rrbracket_{\mathcal{M}}^{\eta} = c^{\mathcal{M}}$
- $\llbracket f(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta})$



### **Interpretations**

An **interpretation** is a pair  $(\mathcal{M}, \eta)$  where  $\mathcal{M}$  is a model and  $\eta$  is an environment.

An interpretation  $(\mathcal{M}, \eta)$  maps formulas to  $\mathbb{B}$  recursively as follows:

- $\llbracket P(t_1,\ldots,t_k) \rrbracket_{\mathcal{M}}^{\eta} = \text{true if } P^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\mathcal{M}}^{\eta},\ldots,\llbracket t_k \rrbracket_{\mathcal{M}}^{\eta}) \text{ holds.}$
- ullet  $\llbracket t_1 = t_2 
  bracket^\eta_{\mathcal{M}} = ext{true if } \llbracket t_1 
  bracket^\eta_{\mathcal{M}} = \llbracket t_2 
  bracket^\eta_{\mathcal{M}}$
- $\bullet \ \llbracket \forall x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \mathtt{true} \ \mathsf{if} \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[\mathsf{x} \mapsto c]} = \mathtt{true} \ \mathsf{for} \ \mathsf{all} \ c \in \mathsf{dom}(\mathcal{M})$
- $\bullet \ \ \llbracket \exists x \varphi \rrbracket_{\mathcal{M}}^{\eta} = \mathsf{true} \ \mathsf{if} \ \llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta[\mathsf{x} \mapsto c]} = \mathsf{true} \ \mathsf{for} \ \mathsf{some} \ c \in \mathsf{dom}(\mathcal{M})$
- $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  defined in the same way as Propositional Logic for all other formulas  $\varphi$ .



## Interpretations: examples

#### **Example**

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

•  $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1:

#### **Example**

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

•  $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1: true

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

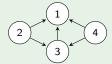
- $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1: true
- $\{0,1,2,3,4\}$  with the standard definition of  $\leq$  and 1, and m+n defined as m+n (mod 5):

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1: true
- $\{0,1,2,3,4\}$  with the standard definition of  $\leq$  and 1, and m+n defined as m+n (mod 5): false

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

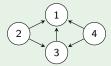
- N with the standard definitions of  $\leq$ , +, and 1: true
- $\{0,1,2,3,4\}$  with the standard definition of  $\leq$  and 1, and m+n defined as m+n (mod 5): false
- The directed graph G = (V, E) shown below with  $\leq = E$ , 1 be the vertex 1, and v + w defined to be w.



#### **Example**

$$\forall x \forall y ((y = x + 1) \rightarrow (x \le y))$$

- $\mathbb{N}$  with the standard definitions of  $\leq$ , +, and 1: true
- $\{0,1,2,3,4\}$  with the standard definition of  $\leq$  and 1, and m+n defined as m+n (mod 5): false
- The directed graph G = (V, E) shown below with  $\leq = E$ , 1 be the vertex 1, and v + w defined to be w.



true

In the definition of  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ ,  $\eta$  is only used to define values for the free variables. In particular, if  $\varphi$  is a sentence then  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  is independent of  $\eta$ .

In the definition of  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ ,  $\eta$  is only used to define values for the free variables. In particular, if  $\varphi$  is a sentence then  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  is independent of  $\eta$ .

Define  $[\![\cdot]\!]_{\mathcal{M}}$  by "delaying" the assigning of values to free variables, and propagating them out.

In the definition of  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ ,  $\eta$  is only used to define values for the free variables. In particular, if  $\varphi$  is a sentence then  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  is independent of  $\eta$ .

Define  $[\![\cdot]\!]_{\mathcal{M}}$  by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

$$\llbracket \varphi(x_1, x_2, \ldots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}}(x_1, x_2, \ldots, x_n)$$

where  $\llbracket \varphi 
rbracket_{\mathcal{M}}$  :



In the definition of  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ ,  $\eta$  is only used to define values for the free variables. In particular, if  $\varphi$  is a sentence then  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  is independent of  $\eta$ .

Define  $[\![\cdot]\!]_{\mathcal{M}}$  by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

$$\llbracket \varphi(x_1, x_2, \ldots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}}(x_1, x_2, \ldots, x_n)$$

where  $\llbracket \varphi \rrbracket_{\mathcal{M}} : \mathsf{dom}(\mathcal{M})^n \to \mathbb{B};$ 



In the definition of  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$ ,  $\eta$  is only used to define values for the free variables. In particular, if  $\varphi$  is a sentence then  $[\![\varphi]\!]_{\mathcal{M}}^{\eta}$  is independent of  $\eta$ .

Define  $[\![\cdot]\!]_{\mathcal{M}}$  by "delaying" the assigning of values to free variables, and propagating them out. That is, define:

$$\llbracket \varphi(x_1, x_2, \dots, x_n) \rrbracket_{\mathcal{M}} = \llbracket \varphi \rrbracket_{\mathcal{M}}(x_1, x_2, \dots, x_n)$$

where  $[\![\varphi]\!]_{\mathcal{M}}: \operatorname{dom}(\mathcal{M})^n \to \mathbb{B}$ ; that is,  $[\![\varphi]\!]_{\mathcal{M}}$  is an *n*-ary relation on  $\operatorname{dom}(\mathcal{M})$ .



### **Example**

Vocabulary: database schema

• Formulas: queries  $(\varphi)$ 

Models: databases (D)

• Interpretation:

- Vocabulary: database schema
- Formulas: queries  $(\varphi)$
- Models: databases  $(\mathcal{D})$
- Interpretation:  $[\![\varphi]\!]_{\mathcal{D}}$  is a relation on dom $(\mathcal{D})$ , i.e. a (derived) table in  $\mathcal{D}$

- Vocabulary: database schema
- Formulas: queries  $(\varphi)$
- Models: databases (D)
- Interpretation:  $[\![\varphi]\!]_{\mathcal{D}}$  is a relation on dom $(\mathcal{D})$ , i.e. a (derived) table in  $\mathcal{D}$
- Environment:



- Vocabulary: database schema
- Formulas: queries  $(\varphi)$
- Models: databases  $(\mathcal{D})$
- Interpretation:  $[\![\varphi]\!]_{\mathcal{D}}$  is a relation on  $\mathsf{dom}(\mathcal{D})$ , i.e. a (derived) table in  $\mathcal{D}$
- Environment: looks up an entry in a (derived) table and returns whether the lookup was successful

- Vocabulary: database schema
- Formulas: queries  $(\varphi)$
- Models: databases  $(\mathcal{D})$
- Interpretation:  $[\![\varphi]\!]_{\mathcal{D}}$  is a relation on dom $(\mathcal{D})$ , i.e. a (derived) table in  $\mathcal{D}$
- Environment: looks up an entry in a (derived) table and returns whether the lookup was successful
- $[\![\varphi]\!]_{\mathcal{D}}^{\eta}$ : Success/fail outcome of looking up a specific entry in a query result on  $\mathcal{D}$ .



# Satisfiability, truth, validity

A formula  $\varphi$  of predicate logic is:

- satisfiable if there is some model  $\mathcal{M}$  and some environment  $\eta$  such that  $[\![\varphi]\!]_{\mathcal{M}}^{\eta} = \text{true}$ .
- true in a model  $\mathcal M$  if for all environments  $\eta$  we have  $[\![\varphi]\!]_{\mathcal M}^\eta = \mathrm{true}$
- a logical validity if it is true in all models.

#### NB

For sentences the first two definitions coincide.



# Satisfiability, truth, validity

A formula  $\varphi$  of predicate logic is:

- satisfiable if there is some model  $\mathcal{M}$  and some environment  $\eta$  such that  $[\![\varphi]\!]_{\mathcal{M}}^{\eta} = \text{true}$ .
- true in a model  $\mathcal M$  if for all environments  $\eta$  we have  $[\![\varphi]\!]_{\mathcal M}^\eta = \mathrm{true}$
- a logical validity if it is true in all models.

#### NB

For sentences the first two definitions coincide.

### **Example**

The sentence  $\forall x \forall y ((y = x + 1) \rightarrow (x \leq y))$  is satisfiable but it is not a logical validity.



### **Entailment, Logical equivalence**

- A theory T entails a formula  $\varphi$ ,  $T \models \varphi$ , if  $\varphi$  is satisfied by any interpretation that satisfies all formulas in T.
- $\varphi$  is **logically equivalent** to  $\psi$ ,  $\varphi \equiv \psi$ , if  $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta} = \llbracket \psi \rrbracket_{\mathcal{M}}^{\eta}$  for all interpretations  $(\mathcal{M}, \eta)$ .

### **Entailment, Logical equivalence**

- A theory T entails a formula  $\varphi$ ,  $T \models \varphi$ , if  $\varphi$  is satisfied by any interpretation that satisfies all formulas in T.
- $\varphi$  is **logically equivalent** to  $\psi$ ,  $\varphi \equiv \psi$ , if  $\llbracket \varphi \rrbracket_{\mathcal{M}}^{\eta} = \llbracket \psi \rrbracket_{\mathcal{M}}^{\eta}$  for all interpretations  $(\mathcal{M}, \eta)$ .

#### **Theorem**

- $\varphi_1, \ldots, \varphi_n \models \psi$  if, and only if,  $(\varphi_1 \land \cdots \land \varphi_n) \rightarrow \psi$  is a logical validity.
- $\varphi \equiv \psi$  if, and only if,  $\varphi \leftrightarrow \psi$  is a logical validity.



# **Summary of topics**

- Re-introduction to Predicate Logic
- Syntax of Predicate Logic
- Semantics of Predicate Logic
- Natural Deduction for Predicate Logic (not today)